如果将石英晶体置于交变电场中,则在电场的作用下,晶体的体积会发生周期性的压缩或拉伸的变化,这样就形成了晶体的机械振动,晶体的振动频率应等于交变电场的频率,在电路中也就是驱动电源的频率。当石英晶振晶体振动时,在它的两表面产生交变电荷,结果在电路中出现了交变电流,这样压电效应使得晶体具有了导电性,可以视之为一个电路元件。
石英晶体本身还具有固有振动频率,此振动频率决定于石英晶振晶体的几何尺寸、密度、弹性和泛音次数,当晶体的固有振动频率和加于其上的交变电场的频率相同时,晶体就会发生谐振,此时振动的幅值最大,同时压电效应在石英晶体表面产生的电荷数量和压电电导性也达最大,这样晶体的机械振动与外面的电场形成电压谐振,这就是石英晶体作为振荡器的理论基础。
石英晶振晶体的电气特性可用图中所示的等效电路图来表示,由等效电阻R1、等效电感L1和等效电容C1组成的串联谐振回路和静态电容Co并联组成,静态电容C0主要由贴片晶振,石英晶体的尺寸与电极确定,再加上支架电容组成。等效电感L1和等效电容C1由切型、石英晶体片和电极的尺寸形状来确定。等效电阻R1是决定石英晶振Q的主要因素,是直接影响石英谐振器工作效果的一个重要参数。R1不仅由切型、石英晶体片形状、尺寸、电极决定,而且加工条件、装架方法等对其影响也很大。因此,同一型号,同一频率的若干产品其Q值也相差很大。
在等效电路中,L1和C1组成串联谐振电路,谐振频率为:
通常石英晶体谐振器的阻抗频率特性可用图2.3表示。此处忽略了等效电阻R1的影响,由图可见,当工作频率f
接着前面的文章我们继续分析基于晶振的微力传感器的发展.有不懂的问题可以到CEOB2B晶振平台晶振技术资料中查看,有关石英晶振的各种型号,参数信息均可查到.
非接触模式是控制探针在样品表面上方扫描,始终不与晶振样品表面接触因而针尖不会对样品造成污染或产生破坏,避免了接触模式中遇到的一些问题。针尖和样品之间的作用力是很弱的长程作用力一范德华吸引力。非接触模式是测量长程力所采用的方法,其分辨率比接触模式的分辨率要低,由于针尖很容易被表面吸附气体的表面压吸附到样品表面,造成图像数据不稳定和对样品的破坏。因此非接触模式操作实际上较为困难,并且通常不适合在液体中成像。
轻敲模式介于接触模式和非接触模式之间(13l。其特点是扫描过程中微悬臂也是振荡的并具有比非接触更大的振幅(大于20nm),针尖在振荡时间断地与样品接触。由于针尖与晶振等样品接触,分辨率几乎和接触式扫描一样的好,但由于接触是短暂的,因此对样品的破坏几乎完全消失,克服了常规扫描模式的局限性。轻敲模式还具有大而且线性的操作范围,使得垂直反馈系统具有高度稳定性,可重复进行样品测量。对于软、粘和脆性样品的研究具有独到的优势但轻敲模式同样也增加了操作和设备的复杂性,在实际运用中存在着不易控制的缺点。
SFM技术的发展强烈依赖于带有特殊针尖的微悬臂制备技术的发展13-15。这种微悬臂和针尖必须是能够简便而快速制备的。在原子力显微镜发展之初,悬臂几何形状一般为L形。其主要是通过将一个很细的金属丝或线圈弯曲90°后,顶端经电化学腐蚀成一个针尖而制备得到的。这种制备方法完全依赖于实验技师的手工技能。第二种悬臂制备方法是微刻技术。第一代是简单的SiO2悬臂,形状为直角和三角,是从氧化硅片上刻蚀得到的。其同腐蚀金属针尖相比,不能很好的控制其尖锐程度。后来改用SiN4代替SiO2作为悬臂材料。Si3N4脆性较低,而且厚度可以从1.5降到0.3um。这一代悬臂具有完整针尖,而且曲率半径非常低。
美国斯坦福大学是在硅片上刻蚀出金字塔形的小片,可以得到曲率半径小于30nm的针尖。IBM公司则采用硅片(100)来制备具有完整针尖的硅悬臂,曲率半径低于100nm。这些通过微电子加工将针尖集成于一体的微悬臂方法有很好的可重复性,不需粘另外的针尖,便于大批量生产。所以一般商用的AFM都采用这种力传感器。但对于静电力显微镜和磁力显微镜来说,由于针尖材料具有特殊的要求,还是要采用在微悬臂上粘针尖的方法。
从以上可以看出,这些基于微悬臂的SFM它们都有一个共同的缺点;它们不仅需要一个结构复杂的微小悬臂作为力的传感器,而且还要一个激光干涉仪用于检测微悬臂的微小位移来获得表面变化信息。因而结构较为复杂,成本也很高,操作难度增大,也就造成其在应用中的局限性。所以必须采用其他的传感器和非光学的检测方法。
CEOB2B晶振平台是全球最优质电子商务平台,提供免费产品推广,海内外晶振规格料号查询,下载等服务.在这里你可以查询到海内外所有品牌产品替代,上百家知名晶振品牌,替代产品终有一家适合你的.今天要为大家介绍的是有关晶振的MFM的主要应用及存在的问题.
1.MFM的应用14.5.6
磁记录介质材料是MFM研究最多的物质之一。事实上,在MFM发展初期,MFM首先用于各种磁记录介质和磁头,在很小的尺度上仔细研究写入的磁斑、记录的轨道、磁头磁场分布等,以分析和判断磁盘和磁头的性能。现在, MFM业已成为高密度磁盘常规测试的工具。超高密度磁存储技术的发展要求在纳米尺度研究磁性晶体的微结构及探测磁性晶体的单畴性,因而必须采用MFM。
Martin等人第一次利用MFM对Tb1 ofer薄膜(一种重要的磁光材料)中写入的磁畴结构(静磁场)作了研究,空间分辨率达到100nm。MFM也可对软磁膜的磁畴进行结构研究。MFM具有足够的灵敏度和分辨率来观察图像中波动结构等磁信息。针尖样品,石英晶振元件间距少于100nm时,还可清晰看到针尖诱导畴壁运动的证据。
再次,MFM能够用来观察磁粒子的微磁学性质和一些物质的磁壁结构近年来,利用MFM对有机铁磁体以及生物分子磁性的研究也已经引起科学工作者的广泛重视。
2.MFM研究中的一些问题
各种磁性材料磁力(梯度)图的准确测量。实际上这就要使磁针尖和样品匹配起来,尽可能减少磁针尖和样品的相互影响。
MFM的定量测量和磁畴结构的计算机模拟。MFM的定量测量,在很大的程度上是测定磁针尖的性质,如磁矩、弹性系数、品质因数等。但这是相当困难的,何况小小的磁针尖上还可能存在磁性微结构。这就要用校准的方法,并对针尖作合理的近似,才能开展对所测磁力图的解释、分析和计算机模拟工作。
MFM在1987年发明后的很短期间内,分辨率已达到50nm。但至今其现实的横向分辨率仍停留在50-20nm,表明在MFM现有的构架内分辨率已难以突破,要获得实质性的提高,需要有新的思想.
我们接着前面介绍到的石英晶振片的由来以及工作原理,我们接着说石英晶振晶片的电极对膜厚监控、速率控制至关重要。目前,市场上提供三种标准电极材料:金、银和合金。
金是最广泛使用的传统材料,它具有低接触电阻,高化学温定性,易于沉积。金最适合于低应力材料,如金,银,铜的膜厚控制。用镀金晶振片监控以上产品,即使频率飘移IMHz,也没有负作用。然而,金电极不易弯曲,会将应力从膜层转移到石英基片上。转移的压力会使晶振片跳频和严重影响质量和稳定性。
银是接近完美的电极材料,有非常低的接触电阻和优良的塑变性。然而,银容易硫化,硫化后的银接触电阻高,降低晶振片上膜层的牢固性。
银铝合金晶振片最近推出一种新型电极材料,适合高应力膜料的镀膜监控,如siO,SiO2,MgF2,TiO2。这些高应力膜层,由于高张力或堆积的引]力,经常会使晶振片有不稳定,高应力会使基片变形而导致跳频。这些高应力膜层,由于高张力或堆积的引力,经常会使贴片晶振,石英晶振片有不稳定,高应力会使基片变形而导致跳频。银铝合金通过塑变或流变分散应力,在张力或应力使基体变形前,银铝电极已经释放了这些应力。这使银铝合金晶振片具有更长时间,更稳定的振动。有实验表明镀Si02用银铝合金晶振片比镀金寿命长400%。
镀膜科技日新月异,对于镀膜工程师来说,如何根据不同的镀膜工艺选择最佳的晶振片确实不易。下面建议供大家参考
(1)镀低应力膜料时,选择镀金晶振片
最常见的镀膜是镀A、Au、Ag、Cu,这些膜层几乎没有应力,在室温下镀膜即可膜层较软,易划伤,但不会裂开或对基底产生负作用。建议使用镀金晶振片用于上述镀膜,经验证明,可以在镀金晶振片镀60000埃金和50000埃银的厚度。
(2)使用镀银或银铝合金镀高应力膜层
NiCr、Mo、Zr、Ni-Cr、Ti、不锈钢这些材料容易产生高应力,膜层容易从晶体基片上剥落或裂开,以致出现速率的突然跳跃或一系列速率的突然不规则正负变动。有时,这些情况可以容忍,但在一些情况下,会对蒸发源的功率控制有不良作用。
(3)使用银铝合金晶振片镀介质光学膜
MgF2、SiO2、A2O3、TiO2膜料由于良好的光学透明区域或折射率特性,被广泛用于光学镀膜,但这些膜料也是最难监控的,只有基底温度大于200度时,这些膜层才会与基底有非常良好的结合力,所以当这些膜料镀在水冷的基底晶振片上,在膜层凝结过程会产生巨大的应力,容易使晶振片在1000埃以内就回失效。
在进行系统测试时,被锁晶振采用高稳定度恒温晶体振荡器(10MHz±3Hz),GPS接收机选用LASSEN IQ型,采用5585B-PRS型铯原子频标作为频率参考,该铯原子频标可输出10MHz信号,具有较好的频率准确度及稳定度,其频率准确度优于5×10-12,秒级频率稳定度优于1×10-11/s。
采用相位比对的方法来测试被锁石英晶振的相对频率准确度,测试连接图如图5.1所示。将被锁定的晶体振荡器的10MHz频率信号和铯原子频标产生的10MHz频率信号分别作为开关门信号输入到精密时间间隔测试仪HP5370B(分辨率为20ps) 进行比对测试,HP5370B输出的时间间隔值与两个比对信号的相位差成正比。该时间间隔值的变化反映了两个信号的相位差的变化。计算相对频差的公式为:
其中,τ为取样周期;△T为在取样周期τ内两信号累积的相位差变化。由此式可以看出,△T的测量误差取决于HP5370B的时间间隔测量分辨率,最小为±20ps,也就是在ls闸门时间内相对晶振频率准确度为±2×10-11,但是随着采样时间r的增大,测量误差可以大大的减小,精度也不断提高。
由于天气等原因,对接收机工作有影响,所以做实验时适当选择比较好的天气。取样时间设定为40s,OCX0石英晶体振荡器在系统运行3小时后即进入锁定状态,开始对晶体振荡器锁定状态下与铯原子频标进行相位比对测试,记录系统连续工作10小时的数据,图5.2为OCXO晶振的频率准确度随时间的变化曲线。
从图5.2中可以看出,锁定后OCXO晶振的频率值在标称频率上下起伏,最大起伏约为9.0×10-11。通过计算,图5.2中所显示的频率平均准确度达到73×10-12,相对于所采用晶体振荡器的约5×10-10/d的老化率有明显改进,同时也说明晶振频率的漂移得到了一定程度的修正。
在进行石英贴片晶振频率稳定度测试时,由于实验室测频仪器测量的分辨率的有限,ls和10s的稳定度由直接测频法计算得到,而100s、1000s、5000s和10000S由比相间接测频法计算得到,相位比对数据采用上面图5.2中所采集的数据。锁定后, OCXO的频率稳定度测试结果如表5.1所示:
从表51中可以看出,锁定后的OCXO恒温晶体振荡器的短期稳定度基本保持了其本身的指标,而其中长期稳定度不是非常理想,这是由lPPS中存在的中长期相位漂移以及Kalman滤波和PID控制参数还不是很合理造成的,但总体较其本身指标,有一定程度的提高。因此,后续工作需要增大滤波时间常数,进一步继续优化 Kalman滤波和PID控制模型的参数,使得 Kalman滤波的收敛值更小,对OCXO晶振频率的调整幅度和频度更低。
通过前面CEOB2B晶振所发表的文章中相信大家对GPS系统以及晶振在GPS中的应用有了更深的了解.我们知道GPS输出的1PPS信号具有很好的长期稳定性,但是短期稳定性却很差。利用GPS信号来定时估计出晶振输出频率的偏差,并实时地进行校准,就可以得到短期稳定性和长期稳定性都很好的频率标准。锁定后的晶体振荡器能输出高精度的频率信号,其短期稳定度能保持本地振荡器的水平,优于l×10-11/s,并能在本地被控振荡器上有效地复现接收的标准时间频率信号的长期稳定度和准确度,锁定状态下频率准确度优于5×10-11,日漂移率达到10-13量级。
根据系统需要开发成本低、安全可靠的设计原则,提出了系统的整体设计方案。整个系统由高稳定度有源晶振,恒温石英晶体振荡器、GPS接收机、时间间隔测量模块、微处理器模块、高分辨率DA转化及信号调理模块、分频模块和显示等部分构成, 在控制软件(包括FPGA、单片机两部分)的控制下协调工作,其组成框图如图
3.1所示
方案各模块功能介绍
1.GPS接收机模块:接收GPS信号,输出标准IPPS秒信号(一般含有干扰脉冲),所以直接使用此信号不合适,必须通过解码判断其有效性并进行处理,然后用于校准石英晶振。
2.时间间隔测量模块:测量GPS接收机输出的1PPS信号和OCXO分频产的1Hz秒信号的上升沿之间的时间间隔值,并把测量结果传送给数据处理模块, 考虑到精度问题,先把OCXO晶振倍频到100MHz再分频成1Hz。
3.数据处理模块:在GPS信号有效时,接收时间间隔测量模块传送的数据运用Kalman滤波算法对测量的时间间隔进行数字滤波,消除lPPS信号的抖动。具体实现取相隔采样周期τ的两个滤波后的时间间隔差值△T1和△T2,得到相位差△T=△T2-△T1,用比时法计算相对频差:
其中,f6为被校准石英晶体振荡器的标称频率,Δf为石英晶体振荡器的测量频率与标称频率的差值。计算出频率4f后,根据OCXO的压控灵敏度系数K计算被校石英晶体振荡器控制电压的数字量,再通过高精度的D/A转换得出石英晶体振荡器的控制电压(控制电压U=U+Δf/K),达到校正晶体振荡器输出频率的目的。经过多次测量和控制,最终把石英晶体振荡器的准确度和稳定度都锁定在GPS卫星星载钟上。
同时, 系统还有自动记录功能,把校正数据,根据接收传感器组和辅助时钟模块发送的时间和温度等信息,把校正数据和与之对应的时间、温度等信息保存起来,GPS信号有效时,通过相应的算法分离出温度、老化等因素对石英贴片晶振的影响,如果检测到GPS信号失效后,结合采集到的实时温度和时间信息,利用失效前得到的预测模型,计算出老化和温度各自对输出频率的影响量,然后合成输出校正量来继续校准恒温晶振,使石英晶体振荡器能继续保持一定的精度。同时控制LCD的显示。
4.高分辨率D/A转换及信号调理模块:接收数据处理模块发送的控制数据, 将其转化为模拟控制电压,并通过相应的信号调理电路,使模拟电压的范围符合OCXO晶振的电压压控范围。
5.分频控制模块:将输入的经过校正后的原始频率信号进行分频,产生用于测量和同步输出的秒脉冲,并可以控制输出秒脉冲的脉冲宽度。
6.传感器组和辅助时钟模块:采集对OCXO晶振输出频率精确度有一定影响的温度和老化时间等信息,并传输给数据处理模块,为分离出温度、老化的影响提供相应的数据。
石英晶振离子刻蚀频率微调方法
图4-1是基于石英晶振离子刻蚀技术的频率微调示意图,离子刻蚀频率微调方法,当照射面积小于2~3mm2,在beam电压低于100V以下就可获得接近10mA/cm2的高电流密度的离子束,离子束的刻蚀速度在宽范围內可进行调节。图中采用的是小型热阴极PIG型离子枪,放电气体使用Ar,流量很小只需035cc/min。在:圆筒状的阳极周围安装永久磁石,使得在轴方向加上了磁场这样的磁控管就变成了离子透镜,可以对离子束进行聚焦。热阴极磁控管放电后得到的高密度等离子,在遮蔽钼片和加速钼片之间加高达1200V高压后被引出。并且可以通过对热阴极的控制调整等离子的速度。
用离子束照射石英晶振的电极膜,通过溅射刻蚀使得频率上升米进行频率微调。
在调整时,通过π回路使用网络分析仪对石英晶振的频率进行监控,当达到目标频率后就停止刻蚀,调整结束。
因为石英晶振与π回路之间用电容连接,离子束的正电荷无法流到GND而积聚在石英晶片上,使石英晶振晶片带正电荷。其结果不仅会使频率微调速度降低,而且使石英晶片不发振,无法对石英晶振的频率进行监控和调整。为此,必须采用中和器对石英贴片晶振晶振片上的正电荷进行中和。
在进行离子刻蚀频率调整时,离子束对一个制品进行刻蚀所需的时间为1~2秒, 而等待的时间约2秒,等待时间包括对制品的搬送和频率的测量时间。在等待时间中, 是将挡板关闭的。如果在这段时间内,离子枪继续有离子束引|出,则0.5mm厚的不锈钢挡板将很快被穿孔而报废。为此,在等待时间内,必须停止离子枪的离子束引出。
可以用高压继电器切断离子枪的各电源,除保留离子枪的放电电源(可维持离子枪的放电稳定)。这样,在等待时间没有离子束的刻蚀,使挡板的使用寿命大大增长。同是,出于高压继电器的动作速度很快,动作时间比机械式挡板的动作时间少很多,所以调整精度也可得到提高。
石英晶振是采用石英晶片制成的,而不同频率的石英晶振对应的石英晶片的大小、厚薄是不一样的,一般来讲,石英晶振的频率越高,需要的石英晶片越薄.比如40MHZ的石英晶体所需的晶片厚度是41.75毫米,這樣的厚度還算可以做到,但100MHZ的石英晶体,所需的晶片厚度则是16.7毫米.即使厚度可做到但損耗非常高,製成成品後輕輕一跌晶片就碎裂.所以一般在高频的晶体就要采用三次泛音、五次泛音、七次泛音的技术来达到了.
比如基频为20MHZ的石英贴片晶振晶体,五次泛音之后就可以得到100MHZ的晶体.一般以经验来讲,40MHZ以下基本都是基频晶振,而40MHZ以上,则是泛音晶振了.
两者在用法上也是有一定的区别的,比如基频的晶体,只需要接入适当的电容就可以工作,而泛音晶体则需要电感与电容配合使用才可振出泛音频率,否则就只能振出基频了.
如下图所示晶振电路:
首先:因为每一种石英晶振都有各自的特性,所以最好按制造厂商所提供的数值选择外部元器件.日本西铁城株式会社,英文CITIZEN晶振,成立于1918年,最开始轰动世界是因为研发了一款具有防水,防震的时尚手表,而后因自身的钟表产品需要用到石英晶体,32.768K晶振,于是在1975年设立了西铁城株式会社水晶事业部,此后便开始了晶体频率元件的研发生产.通过自身的努力以及独特的生产技术,不断创新,发展至今已是全球500强企业.
CITIZEN石英晶振满足市场需求同时提供有源石英晶体振荡器和无源晶振.为用户更好的使用,为DIP插件和SMD贴片两种焊接模式.以下为CEOB2B晶振平台所提供的西铁城3225封装贴片晶振料号.
为各行业产品选型使用更方便,西铁城石英晶振均有一个专属的编码,行业内称之为晶振料号.西铁城晶振3.2x2.5mm体积,厚度薄,体积小,频率选用范围广.CEOB2B晶振平台列举的3225晶振非市场常用频点, 26.65MHz,18.9375MHz,37.05MHz等.
西铁城CS325S晶振的频率偏差在±50ppm,实际范围可提供±10ppm~±100ppm之间.具有精度稳定,尺寸小,重量轻等特点,西铁城晶振被广泛用于笔记本,智能手机,无线蓝牙,网络设备,通信产品,汽车电子,摄像头,数码产品等.CEOB2B晶振平台提供海内外晶振品牌,同时免费提供晶振原厂编码,晶振技术资料下载等服务.
IDT晶振集团在生产石英晶体振荡器方面有超前的技术,并且具有生产多种差分输出的差分石英晶体振荡器技术.比如IDT石英晶体振荡器XL和XU晶振系列,具有多种封装尺寸,产品选用频率范围广,具有高频,高精度,低功耗,低抖动等特点.
IDT差分晶振LVPECL输出5032体积XUP535212.500JS6I晶振料号由CEOB2B晶振平台免费提供,IDT差分晶振工作温度可以到达低温-50度高温到100度,频率稳定度在±20PPM值,输出电压低抖动晶振能达到1V,起振时间为0秒,随机抖动性能在0.2ps Typ. 3ps Typ. 25ps Typ. 4ps Typ.相位抖动能从0.3ps Max-1ps Max.具有高可靠使用特性.石英晶体振荡器是如今高端智能产品都会用到的一种电子元件.石英晶体振荡器是相较于石英晶体谐振器自身带有电源电压功能的有源晶振. ConnorWinfield有源晶振使用独特的生产技术,选用无铅无害环保材料,具有高品质,高可靠使用特性.
ConnorWinfield温补晶振频率10M晶振根据不同用户分为4脚,6脚,8脚,10脚,而列表中CEOB2B晶振平台所提供的为4个焊接脚和8个焊接脚.温补晶振是带有温度补偿功能的石英晶体振荡器,可供电压源电压1.8V~3.3V之间.FOX晶振在美国成立,自创建以来坚持不断为用户提供高品质,高精密石英晶体振荡器,石英贴片晶振,石英晶体谐振器等频率元件.FOX晶振在美过与CTS晶振,IDT晶振等品牌有着同样高的人气.是大多知名企业指定的石英晶振供应商.
CEOB2B晶振平台提供FOX石英晶体振荡器48M/50M 频率F4100-500晶振对应的编码,对照列表方便选型.表格中的频率为48M和50M两种,封装尺寸从小体积2.0x1.6mm~大体积7.0x5.0mm都有,并且电源电压包括18V,3.3V等多种选择.
FOX晶振不同的参数对应不同的型号,每个不同的型号都有专属的代码.包含各种信息,方便选型使用.FOX石英晶振具有体积小,重量轻,精度稳定等特点.采用优异的材料生产具有使用可靠性高等特点.被广泛用于汽车电子,数码家居,无线通信,网络装置等产品中.
CTS晶振在过去的大萧条时期,从一个生产成品(电话和交换机)的制造商发展成一个部件制造商. CTS石英晶振集团成立于1896年,主要以生产石英晶振,贴片晶振,有源晶振,石英晶体谐振器等频率控制元件制造商.发展至今在欧洲,亚洲,北美等地设有研发生产基地,为更好的为用户提供服务销售据点遍布全球.
CTS石英晶振是不断提升技术,以独特的生产技术,开拓创新,不断为用户提供所需晶振,以达到客户要求,为客户提供质优价廉的高品质晶振产品.CTS石英晶体振荡器满足市场需求,分为TCXO温补晶振,VCXO压控晶振,OCXO恒温晶振,VC-TCXO压控温补晶振,LVDS差分晶振等.
西迪斯50M有源晶振6脚封装637L5003I3T晶振编码对照列表由CEOB2B晶振平台提供.CTS石英晶体振荡器电压范围在1.8V~5V之间,精度偏差在30PPM~100PPM范围,具有高稳定,高性能,低功耗,低电源电源等特点.被广泛用于无线电基站,GPS卫星导航,光纤交换机,数据,通讯设备,工业机械等高端智能产品.
TEL: 0755-27876201- CELL: 13728742863
主营 :石英晶振,贴片晶振,有源晶振,陶瓷谐振器,32.768K晶振,声表面谐振器,爱普生晶振,KDS晶振,西铁城晶振,TXC晶振等进口晶振
TEL: 0755-27837162- CELL: 13510569637
主营 :晶振,进口晶振,石英晶振,陶瓷晶振,贴片晶振,圆柱晶振,无源晶振,有源晶振,温补晶振,压控晶振,压控温补晶振,恒温晶振,差分晶振,雾化片,滤波器.
石英晶体振荡器的压电效应以及等效电路原理
关于QQ在网页点击及时通讯设置