欢迎来到CEOB2B晶振平台

咨询热线:

0755-27839045

日产进口晶振 :
KDS晶振KDScrystal
爱普生晶振EPSONcrystal
NDK晶振NDKcrystal
京瓷晶振KyoceraCrystal
精工晶振SEIKOcrystal
西铁城晶振CITIZENcrystal
村田晶振MurataCrystal
大河晶振RiverCrystal
富士晶振FujicomCrystal
SMI晶振SMICrystal
NAKA晶振NAKACrystal
NJR晶振NJRCrystal
中国台产晶振 :
泰艺晶振TAITIENcrystal
TXC晶振TXCcrystal
鸿星晶振HOSONICcrystal
希华晶振SIWARDcrystal
加高晶振HELEcrystal
百利通亚陶晶振DiodesCrystal
嘉硕晶振TSTcrystal
津绽晶振NSKcrystal
玛居礼晶振MERCURYcrystal
应达利晶振Interquip Crystal
AKER晶振
NKG晶振NKGCrystal
欧美石英晶振 :
CTS晶振CTScrystal
微晶晶振Microcrystal
瑞康晶振RakonCrystal
康纳温菲尔德ConnorWinfield
高利奇晶振GolledgeCrystal
Jauch晶振JauchCrystal
AbraconCrystalAbraconCrystal
维管晶振VectronCrystal
ECScrystal晶振ECScrystal
日蚀晶振ECLIPTEKcrystal
拉隆晶振RaltronCrystal
格林雷晶振GreenrayCrystal
SiTimeCrystalSiTimeCrystal
IDTcrystal晶振IDTcrystal
Pletronics晶振PletronicsCrystal
StatekCrystalStatekCrystal
AEK晶振AEKCrystal
AEL晶振AELcrystal
Cardinal晶振Cardinalcrystal
Crystek晶振Crystekcrystal
Euroquartz晶振Euroquartzcrystal
福克斯晶振FOXcrystal
Frequency晶振Frequencycrystal
GEYER晶振GEYERcrystal
ILSI晶振ILSIcrystal
KVG晶振KVGcrystal
MMDCOMP晶振MMDCOMPcrystal
MtronPTI晶振MtronPTIcrystal
QANTEK晶振QANTEKcrystal
QuartzCom晶振QuartzComcrystal
QuartzChnik晶振QuartzChnikcrystal
SUNTSU晶振SUNTSUcrystal
Transko晶振Transkocrystal
WI2WI晶振WI2WIcrystal
韩国三呢晶振SUNNY Crystal
ITTI晶振ITTICrystal
Oscilent晶振OscilentCrystal
ACT晶振ACTCrystal
Lihom晶振LihomCrystal
Rubyquartz晶振RubyquartzCrystal
SHINSUNG晶振SHINSUNGCrystal
PDI晶振PDICrystal
MTI-milliren晶振MTImillirenCrystal
IQD晶振IQDCrystal
Microchip晶振MicrochipCrystal
Silicon晶振SiliconCrystal
富通晶振FortimingCrystal
科尔晶振CORECrystal
NIPPON晶振NIPPONCrystal
NIC晶振NICCrystal
QVS晶振QVSCrystal
Bomar晶振BomarCrystal
百利晶振BlileyCrystal
GED晶振GEDCrystal
菲特罗尼克斯晶振FiltroneticsCrystal
STD晶振STDCrystal
Q-Tech晶振Q-TechCrystal
安德森晶振AndersonCrystal
文泽尔晶振WenzelCrystal
耐尔晶振NELCrystal
EM晶振EMCrystal
彼得曼晶振PETERMANNCrystal
FCD-Tech晶振FCD-TechCrystal
HEC晶振HECCrystal
FMI晶振FMICrystal
麦克罗比特晶振MacrobizesCrystal
AXTAL晶振AXTALCrystal
ARGO晶振
Skyworks晶振
Renesas瑞萨晶振
有源晶振 :
石英晶体振荡器
温补晶振
压控晶振
VC-TCXO晶振
差分晶振
32.768K有源
恒温晶振
贴片晶振 :
5070晶振
6035晶振
5032晶振
3225晶振
2520晶振
2016晶振
1612晶振
1210晶振
8045晶振
32.768K晶振 :
10.4x4.0晶振
8.0x3.8晶振
7.1x3.3晶振
7.0x1.5晶振
5.0x1.8晶振
4.1x1.5晶振
3.2x1.5晶振
2.0x1.2晶振
1.6x1.0晶振
为你解决国内外知名品牌产品料号代码,查询对照

在线品牌会员

当前位置首页 » 新闻动态 » 射频接收中石英晶体振荡器电路的设计及工程估算

射频接收中石英晶体振荡器电路的设计及工程估算

返回列表 来源:CEOB2B晶振平台 浏览:- 发布日期:2018-06-04 11:06:33【

随着通信技术的快速发展,振荡器的研究、设计和技术得到了很大的发展。为了适应无线寻呼接收机、FM-SCA股票机、PDA等通信产品的小型化,在射频接收电路中一本振采用了石英晶体振荡器电路。 

1.振荡电路的确定    

对振荡电路的选择取决于对工作频率、频率稳定度的要求,同时还要考虑射频接收小型化、低功耗及其他要求。有源晶振电路应设计成结构简单、功耗小、调试方便并且频率可以微调的电路。经过分析,确定采用如图1所示的结构。该电路为电容三点式振荡,是串联式晶体振荡电路。

SPJZ1

图1一本振石英晶体振荡电路原理图 

(1)振荡电路原理分析    

图2为图1的交流等效电路,其中C16、C17、L05组成的支路相对于三次泛音晶体的基频开路,在晶体的标称频率振荡时可以不考虑。由于振荡器的输出负载和振荡器之间是弱耦合,故也可以忽略不计。有源贴片晶振工作在串联谐振频率上,且晶振发生串联谐振时,该振荡器电路的正反馈最强,只有这时才能满足振幅条件而使电路起振。一旦晶振工作点偏离串联谐振点,由于晶体的动态电感很大,而R09较小,则等效并联在电感和晶振两端的电阻较小,大大影响了谐振网络的Q值,使电路无法工作。

SPJZ2

图2 交流等效电路

在此电路中,电路进入集电结的饱和区而发生饱和限幅失真,集电极电流因此包含丰富的谐波分量,输出负载网络调谐在振荡回路的二次谐波上(L06和晶振支路相对于二次谐波开路),而有效抑制基波及其余各次谐波。    

此种类型的石英晶体振荡器可以用如图3所示的模型描述,即一个线性时不变网络(LTIN)将振荡器电路分成三部分:一个非线性有源器件、一个基波谐振网络和一个二次谐波网络。

SPJZ3

其中,有源器件的电流-电压转移关系可描述为:

SPJZ4

由于除了基波和二次谐波外,其他各次谐波没有可以流通的谐振回路,故为简化起见,分析时仅列出这两项(如上式所示)。在本电路中,二倍频选频回路与基波振荡回路之间属弱耦合,且二次谐波分量对振荡回路电流I的影响甚小,故U≈U1。因此,在分析此电路时,可先忽略二倍频选频回路,仅分析基波谐振回路与有源石英晶振形成的网络回路,求出各点的基波电压幅度。由于该电路也会出现集电极饱和,因此集电极-基极电压被限幅,然后由图中基极-发射极电压与集电极各次谐波电流的关系得到集电极二次谐波电流,由此电流与二倍频选频网络组成的回路得出其二次谐波输出电压幅度。

(2)频率稳定度分析    

图4为由交流等效电路图简化后得到的振荡回路中基波回路的交流等效电路图。SPXO晶体振荡器的环路增益可近似表示为AL=gmZL(C2/C1),其中ZL是L、C1、Y1和C2的并联阻抗,而Y1为晶体的等效阻抗,则频率稳定度为:

SPJZ5

SPJZ6

图4 振荡器的交流简化图    

环路增益的极点有两对共轭解,频率为(式中C为C1与C2的并联电容),其中频率为ω01的极点位于右半平面,ω02的极点位于左半平面,故频率稳定度为

SPJZ7

其中,Q2为晶体的品质因数,Q1为回路的品质因数,Q2 Q1,所以Sf≈2Q2。由式(2)可知,采用上述振荡电路的频率稳定度极高,即振荡电路的振荡频率很稳定,有利于保证有源贴片晶振振荡频率的一致性。    

调整L、C1、C2或由于温度等的变化使L、C1、C2值发生变化时,振荡频率的相对变化率为

SPJZ8

式(3)表明:晶体振荡器的频率在由晶振和外部调整网络共同构成的回路中,外部LC网络的Q值应该选择得比较低,才有益于晶体振荡器的频率稳定。

CEOB2B晶振平台是全球最专业的频率控制元器件采购供应电子商务平台,除了长期提供进口晶振型号、厂家、原厂编码、现货库存、替代料号等查询服务之外,还提供技术资料,技术指导支持。满足广大用户群体对于石英晶振,陶瓷晶振的一切需求,没有最好,只有更好,所有在市面上,网络上找不到石英晶体谐振器或有源晶振,在CEOB2B晶振平台上都能找到,解决客户找不到正品货源,交期漫长,缺货等难题。

推荐阅读

    【本文标签】:石英晶体振荡器 射频模块石英晶振
    【责任编辑】:CEOB2B晶振平台版权所有:http://www.jingzhen95.com转载请注明出处