CEOB2B晶振平台主要讲的是关于MEMS振荡器的测试技术和国内外技术的现状,可从这些方面看出与普通石英晶振的差距。
微机电系统(MEMS)属于21 世纪前沿技术,是对MEMS加速度计、MEMS 陀螺仪及惯性导航系统的总称。MEMS 器件特征尺寸从毫米、微米甚至到纳米量级,涉及机械、电子、化学、物理、光学、生物、材料等多个学科。在产品的研制方面,能够显著提升装备轻量化、小型化、精确化和集成化程度,因此应用极为广泛。
MEMS振荡器产品制造与经典的IC 最大区别在于其含有机械部分,封装环节占整个器件成本的大部分,如果在最终封装之后测出器件失效不但浪费成本,还浪费了研究和开发(R&D)、工艺过程和代工时间,因此,MEMS产品的晶圆级测试在早期产品功能测试、可靠性分析及失效分析中,可以降低产品成本和加速上市时间,对于微机电系统产业化非常关键。
晶圆级测试技术应用于MEMS产品开发全周期的3个阶段:
(1)产品研发(R&D)阶段:用以验证器件工作和生产的可行性,获得早期器件特征。
(2)产品试量产阶段:验证器件以较高成品率量产的能力
(3)量产阶段:最大化吞吐量和降低成本。
本文分析了国内和国际MEMS晶圆级测试系统硬件和系统技术现状,参照下表中的RM 8096和RM 8097,给出了国内现有问题的解决方案。
MEMS晶圆级测试系统硬件
1. 测试系统
正如引言所说,一般MEMS振荡器产品的成品率比IC,石英晶体振荡器产品要低很多,成本分析发现60%~80%的制造成本来自于封装阶段,图1中当成品率为50%时,采用晶圆级测试的芯片能节省30%总成本,可见采用晶圆级测试技术,可以极大降低MEMS量产成本,提高器件可靠性。
MEMS晶圆级测试系统现状及未来展望
图1 有无晶圆级测试条件下总成本对比
国际上主流的MEMS开发厂商,如美国的德州仪器(TI)、模拟器件(ADI)、飞思卡尔半导体(Freescale)、Silicon Microstructures(SMI)公司,欧洲的Robert Bosch、意法半导体(ST),日本的丰田电装(DENSO)、欧姆龙(Omron)公司,美国SITIME晶振公司等均配备与MEMS晶圆级产品配套测试系统。
国内而言,某些高校均建立了服务于自身MEMS生产线的晶圆级测试系统,如清华大学、北京大学、复旦大学、东南大学、哈工大等;一些科研院所亦然,如中国电科49所、13所、26所、46所等。测试系统根据产品特点结构和功能各异,其中,航天新锐公司在MEMS晶圆级测试系统的研制方面优势明显,推出了LS1100系列MEMS晶圆片全参数自动测试系统。
测试产品包括流量计、加速度计、陀螺仪等。测试系统由探针台和一系列测量仪器,用于测量晶圆片的动态参数和静态参数。系统测试速率达到8s/芯片;圆片最大为6 in(1 in=2.54 cm);参量包括微小电容(最低10aF)、电阻(1Ω~1GΩ)、固有频率(最高20kHz)、品质因数(最高200000)、带宽(最高10kHz)共5种,准确度最高达±1%。
2. 专用探针卡
探卡是连接芯片管脚和标准仪器必要手段,是晶圆级芯片自动测试的核心部分。
国际上,早在1995年,Beiley M等人提出了一种阵列结构的薄膜式探卡,该探卡采用聚酰亚胺作为薄膜,并将探针做到薄膜当中;2002年,由Park S等人提出利用了Ⅲ型硅片研制的悬臂梁结构探卡,可以承受一定的接触力,并能使探针针尖产生足够的位移,因此,目前国际上通用的探卡形式为该种形式。
国内而言,生产商使用MEMS悬臂梁式芯片测试探卡开展晶圆级测试工作。探卡的主要性能包括机械方面以及电学方面特性。探卡的机械特性主要通过检测悬臂梁的弹性系数来测量。
近年来,纳米压痕技术已经成为MEMS振荡器结构机械特性测试的一个重要手段。利用Nano Indenter XP纳米压痕系统,在探针针尖上施加一个逐步增大的接触力,可得力-位移曲线,加载与卸载过程的力-位移曲线几乎重合,说明悬臂梁在整个受力过程中没有产生塑性变形。利用半导体探针测试台可以检测探卡的电学特性。开路状态时,在相邻两个悬臂梁针尖上加上20 mV的直流电压,测得漏电流仅为0.04 pA,即开路情况下相邻悬臂梁探针之间的绝缘电阻高达500GΩ。
而在探卡针尖相互短接时,可以测得通路电阻约为1.6 Ω。也就是说,对于一个悬臂梁,其探卡背面的针尖到探卡正面的引线点的互联电阻仅为0.8 Ω,这已达到目前芯片测试的基本要求。另外,利用一种半导体参数测试仪(HP4284A)测试了相邻两个探针引线焊盘之间的寄生电容,结果仅为0.02~0.03pF。综上,国内此类结构的探卡在机械性能和电学性能方面均满足MEMS晶圆级测试系统批量测试的要求。
微机电系统的优点是:体积小、重量轻、功耗低、耐用性好、价格低廉等优点、性能稳定等。微机电系统的出现和发展是科学创新思维的结果,使微观尺度制造技术的演进与革命。微机电系统是当前交叉学科的重要研究领域,涉及电子工程、材料工程、机械工程、信息工程等多项科学技术工程,将是未来国民经济和军事科研领域的新增长点。