欢迎来到CEOB2B晶振平台

咨询热线:

0755-27839045

日产进口晶振 :
KDS晶振KDScrystal
爱普生晶振EPSONcrystal
NDK晶振NDKcrystal
京瓷晶振KyoceraCrystal
精工晶振SEIKOcrystal
西铁城晶振CITIZENcrystal
村田晶振MurataCrystal
大河晶振RiverCrystal
富士晶振FujicomCrystal
SMI晶振SMICrystal
NAKA晶振NAKACrystal
NJR晶振NJRCrystal
中国台产晶振 :
泰艺晶振TAITIENcrystal
TXC晶振TXCcrystal
鸿星晶振HOSONICcrystal
希华晶振SIWARDcrystal
加高晶振HELEcrystal
百利通亚陶晶振DiodesCrystal
嘉硕晶振TSTcrystal
津绽晶振NSKcrystal
玛居礼晶振MERCURYcrystal
应达利晶振Interquip Crystal
AKER晶振
NKG晶振NKGCrystal
欧美石英晶振 :
CTS晶振CTScrystal
微晶晶振Microcrystal
瑞康晶振RakonCrystal
康纳温菲尔德ConnorWinfield
高利奇晶振GolledgeCrystal
Jauch晶振JauchCrystal
AbraconCrystalAbraconCrystal
维管晶振VectronCrystal
ECScrystal晶振ECScrystal
日蚀晶振ECLIPTEKcrystal
拉隆晶振RaltronCrystal
格林雷晶振GreenrayCrystal
SiTimeCrystalSiTimeCrystal
IDTcrystal晶振IDTcrystal
Pletronics晶振PletronicsCrystal
StatekCrystalStatekCrystal
AEK晶振AEKCrystal
AEL晶振AELcrystal
Cardinal晶振Cardinalcrystal
Crystek晶振Crystekcrystal
Euroquartz晶振Euroquartzcrystal
福克斯晶振FOXcrystal
Frequency晶振Frequencycrystal
GEYER晶振GEYERcrystal
ILSI晶振ILSIcrystal
KVG晶振KVGcrystal
MMDCOMP晶振MMDCOMPcrystal
MtronPTI晶振MtronPTIcrystal
QANTEK晶振QANTEKcrystal
QuartzCom晶振QuartzComcrystal
QuartzChnik晶振QuartzChnikcrystal
SUNTSU晶振SUNTSUcrystal
Transko晶振Transkocrystal
WI2WI晶振WI2WIcrystal
韩国三呢晶振SUNNY Crystal
ITTI晶振ITTICrystal
Oscilent晶振OscilentCrystal
ACT晶振ACTCrystal
Lihom晶振LihomCrystal
Rubyquartz晶振RubyquartzCrystal
SHINSUNG晶振SHINSUNGCrystal
PDI晶振PDICrystal
MTI-milliren晶振MTImillirenCrystal
IQD晶振IQDCrystal
Microchip晶振MicrochipCrystal
Silicon晶振SiliconCrystal
富通晶振FortimingCrystal
科尔晶振CORECrystal
NIPPON晶振NIPPONCrystal
NIC晶振NICCrystal
QVS晶振QVSCrystal
Bomar晶振BomarCrystal
百利晶振BlileyCrystal
GED晶振GEDCrystal
菲特罗尼克斯晶振FiltroneticsCrystal
STD晶振STDCrystal
Q-Tech晶振Q-TechCrystal
安德森晶振AndersonCrystal
文泽尔晶振WenzelCrystal
耐尔晶振NELCrystal
EM晶振EMCrystal
彼得曼晶振PETERMANNCrystal
FCD-Tech晶振FCD-TechCrystal
HEC晶振HECCrystal
FMI晶振FMICrystal
麦克罗比特晶振MacrobizesCrystal
AXTAL晶振AXTALCrystal
ARGO晶振
Skyworks晶振
Renesas瑞萨晶振
有源晶振 :
石英晶体振荡器
温补晶振
压控晶振
VC-TCXO晶振
差分晶振
32.768K有源
恒温晶振
贴片晶振 :
5070晶振
6035晶振
5032晶振
3225晶振
2520晶振
2016晶振
1612晶振
1210晶振
8045晶振
32.768K晶振 :
10.4x4.0晶振
8.0x3.8晶振
7.1x3.3晶振
7.0x1.5晶振
5.0x1.8晶振
4.1x1.5晶振
3.2x1.5晶振
2.0x1.2晶振
1.6x1.0晶振
为你解决国内外知名品牌产品料号代码,查询对照

在线品牌会员

当前位置首页 » 关于我们 » 压电石英晶体技术资料 » 晶振的时间间隔测量方法对比以及达到的效益

晶振的时间间隔测量方法对比以及达到的效益

返回列表 来源:CEOB2B晶振平台 浏览:- 发布日期:2018-03-05 08:42:19【

高精度的时间测量是实现驯服保持的基础,一般都使用比时法测频差的方法实现对OCXO晶振的锁定,其中最常用的方法就是直接计数法,即在有待测时间间隔构成的闸门信号中填入脉冲,通过必要的计数电路,得到填充脉冲的个数后再乘以填充周期便可计算出待测的时间间隔。但是这种方法的测量精度很低,主要取决于填充脉冲的频率,频率越高测量精度越高,但在实际应用中,这会大大提高对相应器件和线路的要求,同时还存在±1个字的量化误差,直接计数法如图4.3

所示:

4.3直接计数法波形图

其它常用的时间间隔测量方法还有模拟内插法、游标法、量化延迟法、时间幅度转化法,虽然这些方法都具有很高的测量分辨率,但是它们的测量范围都很小,于是考虑将直接计数法和上述某一种高分辨率测量方法相结合的测量方法, 从而可以同时兼顾到测量分辨率和测量范围。

本文采用将直接计数法和时间一幅度转化法相结合的时间间隔测量方法,对时间间隔闸门首先用直接计数法计数,由图43所示,T为被测时间间隔值,T为由直接计数法计算得到的时间间隔测量结果,TT2分别代表代表时间间隔的开始信号和结束信号与计数时钟信号之间的不同步部分,即直接计数法中存在的石英晶振量化误差部分,而这两部分短时间间隔值由采用时间一幅度转换法来测量。因此被测时间间隔值可由下式计算得到:

TX=TN+T1-T2           (4-1)

由于输入到时间间隔测量模块的两信号为来自GPS接收机的IPPS信号和OCXO晶分频得到的1Hz信号,分别以待测闸门的上升沿和下降沿作为短时间间隔TT的开门信号,以紧随它们的第一个填充信号的上升沿和下降沿作为关门信号。

因为填充脉冲为OCXO石英晶体振荡器输出的10MHz信号,理论上1Hz信号和填充脉冲的上升沿是严格对齐的或者有一个固定的相位差,所以可以认为结束信号与填充脉冲之间的相位关系不再是随机的,而是相关的。也就是在该系统中只需考虑待测时间向间隔开门后的短时间间隔T,而不必考虑关门后的短时间间隔T2,所以待测时间间隔变为T=T+T1,时间一幅度转换法的原理图如图4.4所示同。

4.4时间一幅度转化法原理图

具体电路实现时采用CPLD和带有AD转换器的单片机MSP430F247)以及外围的电流源电路、高度开关、放电MOS管等构成,充放电电路如图45所示。

4.5时间一幅度转化法具体电路图

CPLD用于取出直接计数法中计数时钟信号和代表被测时间间隔闸门的开始信号和结束信号之间的不同步部分,并将它们转化为窄脉冲输出。当短时间间隔脉冲CH1的开门信号输入到三极管Q1的基极时,+5V的直流电源对电容进行充电,以实现时间一幅度初步转换;当短时间间隔闸门的关门信号到来时,三极管截止,停止充电并保持充电电压。

晶振信号调理电路将其幅度调理到单片机AD转换器的输入范围内后送入单片机的AD转换器进行转化,完成转化后向效应管BS170发出个复位信号CH_2,使场效应管导通,电容迅速放电,为下一次测量做好准备最后单片机根据AD转换结果,计算出对应的时间间隔值,从而完成了一次完整的测量过程。

这种方法的优点是测量分辨率高,转换时间短。但不足之处就是转换存在非线性误差,因此使用前需要对其校准,将时间间隔随时间变化的两路不同源信号同时输入测量模块和HP5370B,进行测量范围内的约40点逐点校准,而后将校准数据存入单片机自带的Fash存储器,测量时査表并线性拟合得到结果,该区间内根据式(4-2)按线性关系计算该电压值所对应的短时间间隔值T1.

4-2式

其中UAD转换得到的电压值,UmU-分别为所对应电压区间的上限电压值,TmT分别为UmUm所对应的标准时间间隔值,这样就在一程度上减小了非线性误差。