运用石英晶振上的电极对一颗被适当切割并安置的石英晶体施以电场时,晶体会产生变形。这就是压电效应。当外加电场移除时,石英晶体会恢复原状并发出电场,因而在电极上产生电压。这样的特性造成石英晶体在电路中的行为,类似于某种电感器、电容器、与电阻器所组合成的RLC电路。组合中的电感电容谐振频率则反映了石英晶体的实体共振频率。
通过前面CEOB2B晶振所发表的文章中相信大家对GPS系统以及晶振在GPS中的应用有了更深的了解.我们知道GPS输出的1PPS信号具有很好的长期稳定性,但是短期稳定性却很差。利用GPS信号来定时估计出晶振输出频率的偏差,并实时地进行校准,就可以得到短期稳定性和长期稳定性都很好的频率标准。锁定后的晶体振荡器能输出高精度的频率信号,其短期稳定度能保持本地振荡器的水平,优于l×10-11/s,并能在本地被控振荡器上有效地复现接收的标准时间频率信号的长期稳定度和准确度,锁定状态下频率准确度优于5×10-11,日漂移率达到10-13量级。
根据系统需要开发成本低、安全可靠的设计原则,提出了系统的整体设计方案。整个系统由高稳定度有源晶振,恒温石英晶体振荡器、GPS接收机、时间间隔测量模块、微处理器模块、高分辨率DA转化及信号调理模块、分频模块和显示等部分构成, 在控制软件(包括FPGA、单片机两部分)的控制下协调工作,其组成框图如图
3.1所示
方案各模块功能介绍
1.GPS接收机模块:接收GPS信号,输出标准IPPS秒信号(一般含有干扰脉冲),所以直接使用此信号不合适,必须通过解码判断其有效性并进行处理,然后用于校准石英晶振。
2.时间间隔测量模块:测量GPS接收机输出的1PPS信号和OCXO分频产的1Hz秒信号的上升沿之间的时间间隔值,并把测量结果传送给数据处理模块, 考虑到精度问题,先把OCXO晶振倍频到100MHz再分频成1Hz。
3.数据处理模块:在GPS信号有效时,接收时间间隔测量模块传送的数据运用Kalman滤波算法对测量的时间间隔进行数字滤波,消除lPPS信号的抖动。具体实现取相隔采样周期τ的两个滤波后的时间间隔差值△T1和△T2,得到相位差△T=△T2-△T1,用比时法计算相对频差:
其中,f6为被校准石英晶体振荡器的标称频率,Δf为石英晶体振荡器的测量频率与标称频率的差值。计算出频率4f后,根据OCXO的压控灵敏度系数K计算被校石英晶体振荡器控制电压的数字量,再通过高精度的D/A转换得出石英晶体振荡器的控制电压(控制电压U=U+Δf/K),达到校正晶体振荡器输出频率的目的。经过多次测量和控制,最终把石英晶体振荡器的准确度和稳定度都锁定在GPS卫星星载钟上。
同时, 系统还有自动记录功能,把校正数据,根据接收传感器组和辅助时钟模块发送的时间和温度等信息,把校正数据和与之对应的时间、温度等信息保存起来,GPS信号有效时,通过相应的算法分离出温度、老化等因素对石英贴片晶振的影响,如果检测到GPS信号失效后,结合采集到的实时温度和时间信息,利用失效前得到的预测模型,计算出老化和温度各自对输出频率的影响量,然后合成输出校正量来继续校准恒温晶振,使石英晶体振荡器能继续保持一定的精度。同时控制LCD的显示。
4.高分辨率D/A转换及信号调理模块:接收数据处理模块发送的控制数据, 将其转化为模拟控制电压,并通过相应的信号调理电路,使模拟电压的范围符合OCXO晶振的电压压控范围。
5.分频控制模块:将输入的经过校正后的原始频率信号进行分频,产生用于测量和同步输出的秒脉冲,并可以控制输出秒脉冲的脉冲宽度。
6.传感器组和辅助时钟模块:采集对OCXO晶振输出频率精确度有一定影响的温度和老化时间等信息,并传输给数据处理模块,为分离出温度、老化的影响提供相应的数据。
很多人可能会对有源时钟晶振感到好奇,通常我们说的32.768K时钟晶振都是无源晶振,并且这些32.768K晶振的进口晶振中精准度可是已经达到+-5PPM这样高了,同样耐高温耐低温表晶也有,那为什么还需要进一步研发32.768K石英晶体振荡器呢?并且一般32.768K音叉晶振都是用在消费类电子产品上,如果遇到要求高一些的完全选用进口品牌就能满足的,对于这个疑问下面就来具体解说一下有源32.768K晶振的不同之处以及必要之处。
TEL: 0755-27876201- CELL: 13728742863
主营 :石英晶振,贴片晶振,有源晶振,陶瓷谐振器,32.768K晶振,声表面谐振器,爱普生晶振,KDS晶振,西铁城晶振,TXC晶振等进口晶振
TEL: 0755-27837162- CELL: 13510569637
主营 :晶振,进口晶振,石英晶振,陶瓷晶振,贴片晶振,圆柱晶振,无源晶振,有源晶振,温补晶振,压控晶振,压控温补晶振,恒温晶振,差分晶振,雾化片,滤波器.
石英晶体振荡器的压电效应以及等效电路原理
关于QQ在网页点击及时通讯设置