欢迎来到CEOB2B晶振平台

咨询热线:

0755-27839045

日产进口晶振 :
KDS晶振KDScrystal
爱普生晶振EPSONcrystal
NDK晶振NDKcrystal
京瓷晶振KyoceraCrystal
精工晶振SEIKOcrystal
西铁城晶振CITIZENcrystal
村田晶振MurataCrystal
大河晶振RiverCrystal
富士晶振FujicomCrystal
SMI晶振SMICrystal
NAKA晶振NAKACrystal
NJR晶振NJRCrystal
中国台产晶振 :
泰艺晶振TAITIENcrystal
TXC晶振TXCcrystal
鸿星晶振HOSONICcrystal
希华晶振SIWARDcrystal
加高晶振HELEcrystal
百利通亚陶晶振DiodesCrystal
嘉硕晶振TSTcrystal
津绽晶振NSKcrystal
玛居礼晶振MERCURYcrystal
应达利晶振Interquip Crystal
AKER晶振
NKG晶振NKGCrystal
欧美石英晶振 :
CTS晶振CTScrystal
微晶晶振Microcrystal
瑞康晶振RakonCrystal
康纳温菲尔德ConnorWinfield
高利奇晶振GolledgeCrystal
Jauch晶振JauchCrystal
AbraconCrystalAbraconCrystal
维管晶振VectronCrystal
ECScrystal晶振ECScrystal
日蚀晶振ECLIPTEKcrystal
拉隆晶振RaltronCrystal
格林雷晶振GreenrayCrystal
SiTimeCrystalSiTimeCrystal
IDTcrystal晶振IDTcrystal
Pletronics晶振PletronicsCrystal
StatekCrystalStatekCrystal
AEK晶振AEKCrystal
AEL晶振AELcrystal
Cardinal晶振Cardinalcrystal
Crystek晶振Crystekcrystal
Euroquartz晶振Euroquartzcrystal
福克斯晶振FOXcrystal
Frequency晶振Frequencycrystal
GEYER晶振GEYERcrystal
ILSI晶振ILSIcrystal
KVG晶振KVGcrystal
MMDCOMP晶振MMDCOMPcrystal
MtronPTI晶振MtronPTIcrystal
QANTEK晶振QANTEKcrystal
QuartzCom晶振QuartzComcrystal
QuartzChnik晶振QuartzChnikcrystal
SUNTSU晶振SUNTSUcrystal
Transko晶振Transkocrystal
WI2WI晶振WI2WIcrystal
韩国三呢晶振SUNNY Crystal
ITTI晶振ITTICrystal
Oscilent晶振OscilentCrystal
ACT晶振ACTCrystal
Lihom晶振LihomCrystal
Rubyquartz晶振RubyquartzCrystal
SHINSUNG晶振SHINSUNGCrystal
PDI晶振PDICrystal
MTI-milliren晶振MTImillirenCrystal
IQD晶振IQDCrystal
Microchip晶振MicrochipCrystal
Silicon晶振SiliconCrystal
富通晶振FortimingCrystal
科尔晶振CORECrystal
NIPPON晶振NIPPONCrystal
NIC晶振NICCrystal
QVS晶振QVSCrystal
Bomar晶振BomarCrystal
百利晶振BlileyCrystal
GED晶振GEDCrystal
菲特罗尼克斯晶振FiltroneticsCrystal
STD晶振STDCrystal
Q-Tech晶振Q-TechCrystal
安德森晶振AndersonCrystal
文泽尔晶振WenzelCrystal
耐尔晶振NELCrystal
EM晶振EMCrystal
彼得曼晶振PETERMANNCrystal
FCD-Tech晶振FCD-TechCrystal
HEC晶振HECCrystal
FMI晶振FMICrystal
麦克罗比特晶振MacrobizesCrystal
AXTAL晶振AXTALCrystal
ARGO晶振
Skyworks晶振
Renesas瑞萨晶振
有源晶振 :
石英晶体振荡器
温补晶振
压控晶振
VC-TCXO晶振
差分晶振
32.768K有源
恒温晶振
贴片晶振 :
5070晶振
6035晶振
5032晶振
3225晶振
2520晶振
2016晶振
1612晶振
1210晶振
8045晶振
32.768K晶振 :
10.4x4.0晶振
8.0x3.8晶振
7.1x3.3晶振
7.0x1.5晶振
5.0x1.8晶振
4.1x1.5晶振
3.2x1.5晶振
2.0x1.2晶振
1.6x1.0晶振
为你解决国内外知名品牌产品料号代码,查询对照

在线品牌会员

当前位置首页 » 关于我们 » 压电石英晶体技术资料 » 总结分析石英晶振与激光频率微调研究

总结分析石英晶振与激光频率微调研究

返回列表 来源:CEOB2B晶振平台 浏览:- 发布日期:2018-03-23 09:15:10【

4.4.2结论

  这一章节就讲完了,主要讲的是关于激光频率微调的机理研究,由物质对激光的反射和吸收再到后面的激光损伤测量,现在就来都这个章节做下总结情况。

  在激光参数合适的情况下,即使直接刻蚀石英晶振晶片本身,也不会对晶片产生损伤,石英晶片表面平整,形貌良好。

  2.在上述情况下,即不会对晶片本身产生损伤的激光参数下加工晶片,用不同的工艺可以得到不同的频率微调量。

  3.在上述情况下,用激光扫描的方式扫描表面银电极层,使其部分剥落, 在大气环境下,可以达到50ppm左右的频率微调量。

  4.在上述情况下,用激光刻蚀图形的方式刻蚀银电极层外层圆环,使其全部剥落,在大气环境下,可以达到100pmn左右的频率微调量。

  5.在上述情况下,用激光刻蚀图形的方式刻蚀银电极层半边圆,使其全部剥落,在大气环境下,可以达到2300ppm左右的频率微调量。

  6.在以较大激光参数对贴片晶振晶片进行加工时,会使其表面银层全部剥落,并损伤到晶片本身,损伤延伸至2000m深度,被剥落处银电极层与晶体混在一起, 界线模糊。

  7.在大气环境下对石英晶振表面银电极层进行加工,部分银电极层在被激光熔融气化掉后,经大气分子散射作用,重新堆积回银电极层表面,覆盖在银电极层表面,使其表面凹凸不平。

4.5本章小结

  本章从理论角度研究了激光频率微调的机理,包括微调机理和损伤机理。

  激光频率微调即把能量传递给被调节物质,石英晶体振荡器晶片的表面银电极膜,使其表面气化。在这个过程中,部分的激光能量会被电极层反射,部分被吸收,部分被散射。从微观来看,激光对物质的作用是高频电磁波对物质中自由电子或束缚电子的作用,物质对激光的吸收与物质结构和电子能带结构有关。

  金属中存在大量的自由电子,在激光作用下这些自由电子受到光频电磁波的强迫振动而产生次波,这些次波形成了强烈的反射波和较弱的透射波,透射部分将被电子通过轫致辐射过程而吸收,继而转化为电子的平均动能,再通过电子与有源晶振晶格之间的驰豫过程转变为热能。在分析激光对于物质的作用时,可以遵照解析模型来分析。

  通过对用不同技术沉积的硅薄膜激光损伤的研究,发现了对于所有沉积技术都存在一个早期的损伤情态。这种形态与人为缺陷得到的形态的相似性,从而证明了纳米级激光的损伤是由于纳米级吸收性缺陷引起的理论。

  我们进一步通过实验测量了激光损伤。通过用不同工艺刻蚀的石英晶振片进行SEM分析,发现在激光参数合适的情况下,即使直接刻蚀晶片本身,也不会对晶片产生损伤,石英晶片表面平整,形貌良好。在此种情况下,可以达到几pm到几千ppm。可见其适用范围广泛,损害小,是一种优良的新型技术。

  下一章我们研究论文的第三部分激光刻蚀工艺的研究。